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ABSTRACT

In this paper we present an algorithm that produces pitch and

probability-of-voicing estimates for use as features in automatic

speech recognition systems. These features give large performance

improvements on tonal languages for ASR systems, and even sub-

stantial improvements for non-tonal languages. Our method, which

we are calling the Kaldi pitch tracker (because we are adding it to

the Kaldi ASR toolkit), is a highly modified version of the getf0

(RAPT) algorithm. Unlike the original getf0 we do not make a hard

decision whether any given frame is voiced or unvoiced; instead, we

assign a pitch even to unvoiced frames while constraining the pitch

trajectory to be continuous. Our algorithm also produces a quantity

that can be used as a probability of voicing measure; it is based on

the normalized autocorrelation measure that our pitch extractor uses.

We present results on data from various languages in the BABEL

project, and show a large improvement over systems without tonal

features and systems where pitch and POV information was obtained

from SAcC or getf0.

Index Terms— Automatic Speech Recognition, Pitch, Tone,

Probability Of Voicing

1. INTRODUCTION

Our goal in this work was to obtain good-performing pitch and Prob-

ability of Voicing (POV) features for use in speech recognition, and

specifically to produce a standardized pitch feature for use in the

Kaldi Automatic Speech Recognition (ASR) toolkit [1]. In Section 2

we review our work to select the best previously published pitch ex-

traction algorithms; in Section 3 we describe our proposed method.

In Section 4 we describe the pitch post-processing method we used

for the baseline pitch and POV features, and in Section 5 we describe

the post-processing we use with our proposed method. We describe

our ASR system and data-sets in Section 6, give experimental results

in Section 7, and conclude in Section 8.
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2. EXISTING PITCH EXTRACTION METHODS

We started our work by obtaining various off-the-shelf pitch ex-

tractors, namely Yin [2], Getf0 [3], SAcC [4], Wu [5], SWIPE [6]

and YAAPT [7]. We compared their accuracy as pitch trackers (see

Sec. 7). For this we used the Keele database [8], which consists of

about half an hour of speech manually labeled for pitch and voicing.

We selected three of the best-performing methods for further study;

these were SAcC, Yin and getf0 (we did not consider YAAPT at this

point because of its greater complexity; it is based on getf0).

Next, as will be seen in the experimental section, we compared

the pitch features of SAcC, Yin and getf0 in an ASR task. For

this comparison we processed the pitch as described in Section 4

and used the voicing feature from SAcC. These experiments did not

show very large differences between the various pitch extractors, so

we used getf0 as our starting point as it seemed to perform slightly

better than Yin, and it is a relatively simple algorithm to implement

(SAcC gave better performance but it is a fairly complex method).

Due to space limitations we cannot give a general overview of

pitch extraction methods; we refer the interested reader to the refer-

ences, particularly to [3] which describes getf0.

3. THE KALDI PITCH EXTRACTOR

Parameter Value Explanation

min-f0 50 Minimum possible frequency value (Hz)
max-f0 400 Maximum possible frequency value (Hz)
window-width 0.025 Length in seconds of window used for NCCF
window-shift 0.01 Frame-shift, in seconds (should match

that used for baseline features e.g. PLP)
soft-min-f0 10 Minimum f0, applied in soft way;

must not exceed min-f0.
nccf-ballast 0.625 Increasing this factor reduces NCCF for quiet

frames, helping ensure pitch continuity
in unvoiced regions

penalty-factor 0.1 Factor that penalizes frequency change
delta-pitch 0.005 Smallest relative change in pitch

that our algorithm measures
lowpass-cutoff 1000 Low-pass cutoff that we apply to

the raw signal
lowpass-filter-width 2 Integer that determines filter width

of low-pass filter (more gives wider filter with
sharper cutoff)

resample-frequency 4000 Sample frequency for NCCF;
must exceed twice lowpass-cutoff.

upsample-filter-width 5 Integer that determines filter width
when upsampling NCCF

Table 1. Parameters of our algorithm, and their default values

Our algorithm is a highly modified version of the getf0 algo-



rithm. It is based on finding lag values that maximize the Normal-

ized Cross Correlation Function (NCCF). Like most pitch extraction

algorithms, our algorithm has a number of parameters that were set

by hand. We show these and their values in Table 1. It should not be

necessary to change any of these values when applying it to data of

different sampling rates.

Probably the most important change from getf0 is that rather

than making hard decisions about voicing on each frame, we treat

all frames as voiced and allow the Viterbi search to naturally inter-

polate across unvoiced regions. In order to make this happen we had

to make a few changes. We do not limit the search to the approximate

local maxima of the NCCF– we allow it to take any value on a rea-

sonably fine grid. We alter the penalty on the change ∆ in log-pitch

from proportional to abs(∆) to ∆2, which causes the algorithm to

linearly interpolate across constant regions of the NCCF. And we

add a “ballast” term to the NCCF formula which makes it approach

zero for “quiet” regions of the signal; for this to work, we have to

globally energy-normalize the signal. This requires lookahead, as

doe the Viterbi search; in future we plan to create a modified version

of the algorithm for online use.

We also low-pass the signal to 1kHz; this improves accuracy as

well as making the algorithm more efficient by allowing us to work

with a sub-sampled signal. And we obtain a feature based on the

NCCF which is related to the probability of voicing and which helps

in ASR.

3.1. Resampling method

For completeness we will specify the method we use to resample

signals (you may skip this subsection if the details are not needed).

Let the sampled source signal be viewed as a continuous function of

time s(t), where the n’th sample xn becomes a Dirac delta function

shifted to time n/S where S is the sampling rate, and scaled by

xn/S. We define a filter function fC,w(t), parameterized by a cutoff

frequency C ≤ S/2, and an integer width factor w ≥ 1. Let the

window function w(t) be a raised-cosine (Hanning) window with

support on
[

−w
2C

, w
2C

]

. Then define

fC,w(t) = 2C sinc(2Ct)w(t) (1)

where sinc is the normalized sinc function. To take a sample of the
signal at an arbitrary time t, we simply evaluate

∫

u
s(u)f(t − u)

which is the sum s′(t) =
∑

n xn
fC,w(t−n/S)

S
. Naturally we only

evaluate this for the values of n for which the summand is nonzero.

3.2. Subsampling and normalization

Let the input to the algorithm be a discretely sampled signal, sam-

pled with sampling frequency S. The first stage is to use the resam-

pling method above, with the filter parameterized by lowpass-cutoff

and lowpass-filter-width, to sample the signal at sampling frequency

resample-frequency. Next we normalize the resampled signal’s dy-

namic range by dividing by the root-mean-square signal value (if it

is nonzero). Let the result be the signal xn, with n = 0, 1, . . . N−1.

3.3. Computing the NCCF

First we need to establish the range of lags over which to compute

the NCCF. These depend on the frequency range we search over.

Define the quantities min-lag = 1/max-f0, max-lag = 1/min-f0,

which are the minimum and maximum lags(in seconds) at which

we need the NCCF, and furthermore define upsample-filter-frequency

as resample-frequency/2 which is the filter cutoff we will use when

upsampling the NCCF. Then with filter-width w (in seconds) defined

as upsample-filter-width/upsample-filter-frequency , let outer-min-lag =
min-lag − w/2 and outer-max-lag = max-lag +w/2, which gives us a

slightly larger range of lags over which to compute the NCCF (we

need to extend the range by half the width of the filter function we’ll

use when up-sampling the NCCF).

Consider the frame-index t = 0, 1, . . .. The time span of the

signal that we need to process starts at the closest sample to the

time t · window-shift and is of length window-width + outer-max-lag

(in seconds). We produce output for all frame-indices t such that

this time span is wholly within the time span of the input file. Let

wt = (wt,0, wt,1, . . .) be the sequence of samples used for frame t;
this is a subsequence of the sequence xn, of length

⌈(window-width + outer-max-lag) · resample-frequency⌉ samples, but

with its mean subtracted away. Let vt,i represent the sub-sequence

of wt starting at position i and of length

n = ⌈window-width · resample-frequency⌉, so for instance vt,3 =
(wt,3, . . . , wt,n+3). Where convenient we will view these se-

quences as vectors. The NCCF for frame t and lag-index l is

φt,l =
v
T
t,0vt,l

√

||vt,0||22||vt,l||22 + n4 nccf-ballast
, (2)

where ||x||22 = x
T
x. We compute this for all l s.t. outer-min-lag ≤

l/resample-frequency ≤ outer-max-lag.

3.4. Upsampling the NCCF

Next we upsample the NCCF in a non-linear way: that is we measure

the NCCF at the geometrically increasing sequence of lag values

Li = min-lag (1 + delta-pitch)i , i ≥ 0, Li ≤ max-lag, (3)

where the condition Li ≤ max-lag determines the maximum index

i. For each index i we compute the NCCF Φt,i which is the NCCF

φt,Li
measured on frame t at lag Li, using the resampling method

described in Section 3.1 parameterized by upsample-filter-frequency

and upsample-filter-width.

3.5. Defining the cost function

Suppose the range of the frame-index t is 0 ≤ t < T and the range

of the lag index i is 0 ≤ i < I (we have mentioned in Sections 3.3

and 3.4 how these ranges are determined). The pitch trajectory is

obtained by minimizing a cost function defined on a sequence of

indices s = (st)
T−1
t=0 ; each element st is interpreted as a lag-index

i, so 0 ≤ st < I . The cost function consists of a local cost for each

time t plus a term that penalizes changes in frequency:

C(s) =

T−1
∑

t=0

local-cost(t, st)+

T−1
∑

t=1

penalty-factor(log(Lst/Lst−1
))2,

(4)

where the configuration value penalty-factor controls how strongly

we penalize changes in frequency, and we define

local-cost(t, i) = 1− Φt,i(1− soft-min-f0 Li) (5)

View 1−Φt,i as the basic local-cost, and the multiplicative factor on

Φt,i as a kind of penalization of high lags, which will tend to keep

the selected lags substantially below 1/soft-min-f0.



3.6. Optimizing the cost function

The algorithm we use to compute the sequence s that minimizes C(·)
is based on the Viterbi algorithm. A naı̈ve implementation would

take time quadratic in the number I of lag-indices. Let the Viterbi

back-trace on time t > 0 and lag i be b(t, i); this evaluates to an

integer index (like i) that is the optimal lag-index on time t−1 that

we “point back to” from (t, i). Due to convexity in i of the transition-

cost, we can show that b(t, i + 1) ≥ b(t, i). We can use this to

obtain an exact search algorithm that in takes time closer in practice

to linear in I (although not provably so; it is data-dependent). Let

the forward-cost be written as c(t, i). Ignoring all end effects for

purposes of exposition, the basic idea is that, on time t, we first do a

“forward pass” for i = 0 to I−1, and set c(t, i) and b(t, i) while only

considering the previous forward-costs c(t−1, j) for j = b(t, i−1)
to i. Then, in a “backward pass” for i = I−1 to 0, we see whether

we can get a better forward-cost and corresponding backtrace than

we already have by considering the previous forward-costs c(t−1, j)
for j = i+ 1 to b(t, i+ 1). Let the result of this computation be the

state-sequence s = (st)
T−1
t=0 .

3.7. Output

The output of this algorithm is the pitch on each frame and also the

NCCF on each frame. The pitch on frame t equals 1/Lst , with lags

Li as defined in (3). The NCCF values are computed at the selected

lags, so on frame t we output Φt,st (see Sec. 3.4); however, for pur-

poses of this output we compute the NCCF without the nccf-ballast

term of (2) (and treating 0/0 as zero in case of a zero sequence in

the signal). This means that we need to do the upsampling compu-

tation of the NCCF twice. Below we describe how we post-process

the output for use as features for ASR.

4. BASELINE PITCH POST-PROCESSING METHOD

This post-processing that we used for all the non-Kaldi pitch fea-

tures is based on [9, pp.46,54], and is similar to the system of the

“Swordfish” team 1 in the BABEL program (IARPA-BAA-11-02);

our own experimental setup is part of the “Radical” team’s larger

system. First, if there are regions where the pitch extractor says

there is no voicing, we interpolate the pitch values from the adja-

cent voiced region in a straight line across the gap; or for unvoiced

regions at file boundaries, we simply continue the first or last pitch

value. We also add a little noise to the pitch values at this point.

Then, we take the log of the resulting pitch values. We then apply

mean subtraction, subtracting the mean of a window of length 151

frames, centered on the current frame. To the resulting pitch, we

apply short-time smoothing, averaging over a centered window of

5 frames. The reason why it is necessary to add noise and to do

short-time averaging, is that many pitch extractors (including SAcC)

output pitch that is quantized to discrete values, which produces a

“blocky-looking” pitch trace. These operations help make the pitch

trace smoother.

The POV feature is obtained as follows, and note that for all

baseline systems we used the POV estimates from SAcC. We used

log((p + 0.0001)/(1.0001 − p)) as the feature, where 0 ≤ p ≤
1 is the POV estimate from SAcC. So the output is a two features

representing pitch and POV. We append these to the PLP features,

and from then on treat them the same way as we would treat extra

PLP coefficients (i.e. we apply cepstral mean subtraction, and delta

computations or splicing followed by LDA).

1Thanks to Arlo Faria who developed the pitch processing for that system

5. PITCH POST-PROCESSING FOR KALDI PITCH

EXTRACTOR

5.1. Processing NCCF into a POV measure

The basis for our POV measures are the NCCF values for each frame

(see Sec. 3.7). Its range is [−1, 1], but it is usually positive. We pro-

cess the raw NCCF value in two ways, for reasons that will become

clear.

5.1.1. Method intended to give accurate probability of voicing

The first method is only used as part of the pitch mean-subtraction

algorithm we describe below; it processes the NCCF value into a

reasonably accurate probability of voicing measure. The follow-

ing formula was obtained by plotting the log of count(voiced) /

count(unvoiced) on the Keele database as a function of the NCCF,

and manually creating a function to approximate it.

Let the NCCF on a given frame be written c. Compute

its absolute value: let a = abs(c). Then let l = −5.2 +
5.4 exp(7.5(a−1)) + 4.8a − 2 exp(−10a) + 4.2 exp(20(a −
1)). Here, l is intended to approximate the log-likelihood ratio

log(p(voiced)/p(unvoiced)). Then let p = 1/(1 + exp(−l)), and p
is a reasonable approximation to the probability of voicing on this

frame.

5.1.2. Method for use as a feature

The other method we use to process the NCCF, gives a value that

seems to give good performance when used as a feature. This

method was designed to give the feature a reasonably Gaussian

distribution (although there are still noticeably separate peaks for

voiced and unvoiced frames). If −1 ≤ c ≤ 1 is the raw NCCF, we

let the output feature be f = 2
(

(1.0001 − c)0.15 − 1
)

.

5.2. Normalization of pitch

We use the short-time mean subtraction approach of [9], but with

POV weighting: on each time t we subtract a weighted average pitch

value, computed over a window of width 151 frames centered at

t and weighted by the probability of voicing value p described in

Section 5.1.1. Note: the improvement in WER from incorporating

the weighting in the mean subtraction was quite small: of the order

of 0.1% WER, averaged across various languages.

5.3. Delta feature

Since the initial version of this paper was written we have extended

our post-processing by adding to the pitch and POV features a third

feature consisting of the delta-log-pitch computed directly from the

un-normalized log pitch, in the normal way (using ±2 frames of con-

text). The motivation was to get an exact delta-pitch feature with-

out inaccuracies caused by the moving-window mean subtraction.

This, together with the previous two features, is appended to the raw

MFCCs or PLPs. This gave us around 0.4% absolute improvement

on top of the results we show below.

6. SYSTEM DESCRIPTION

6.1. Kaldi BABEL pipeline

Our system is mostly as described in [10], although we have made

various improvements since then. We measure our systems using

%WER and using Actual Term Weighted Value (ATWV), which is

a measure of keyword search effectiveness [11]; larger values are

better. We train on the LimitedLP training data, which is around 10

hours per language.
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database

Our current recipe is based on combination of three types of

Kaldi system, but for speed we only test one of them here: it is a

Subspace Gaussian Mixture Model (SGMM) system [12], discrimi-

natively trained with boosted MMI (bMMI) [13].

Of the languages we tested, only Vietnamese2 and Cantonese3

have tone marked in the dictionary. We configure Kaldi in such a

way that the acoustic decision tree can ask about tone. Of the other

languages, Zulu4 is the only one that is considered to be a tonal lan-

guage, but its lexicon was not marked for tone. We also tested on

Assamese5 and Bengali6 In all cases we tested on the official Dev10h

development set. For the keyword search, the development keyword

phrases (usually performer provided) lists were used. Note: while

we get improvements on pitch in even the atonal BABEL languages,

separate experiments on Switchboard English showed no improve-

ment from our features, compared with just MFCC: possibly English

is exceptional in some way.

In some of our experiments we appended Fundamental Fre-

quency Variation (FFV) features [14]; these are seven-dimensional

features which are informative about pitch changes. These features

were part of our standard pipeline when our pitch features were

based on SAcC, but we find that they are not helpful in combination

with the features from our improved pitch tracker.

7. EXPERIMENTAL RESULTS

Figure 1 compares our pitch tracker with various baselines, using the

Keele corpus. Our pitch tracker gives substantially better accuracy

than the others (but bear in mind that we tuned it on this setup and

that some baselines’ error may be inflated because they classified

some frames as unvoiced).

In Table 2, we compare the Yin, Getf0 and SAcC pitch trackers

on Vietnamese data. Because not all the pitch trackers provide a

POV, we used the SAcC POV. We also added FFV [14] features,

as these were part of our original SAcC-based recipe. SAcC was

still the best of the original pitch trackers we tested, but due to the

simplicity of getf0 we felt it was the best starting point for our work.

2Language collection release IARPA-babel-107b-v0.7.
3Language collection release IARPA-babel-101b-v0.4c sub-train1
4Language collection release IARPA-babel-206b-v0.1d
5Language collection release IARPA-babel-102b-v0.4.
6Language collection release IARPA-babel-103b-v0.3.
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Features WER

Yin pitch + SAcC POV + FFV 68.1

GetF0 pitch + SAcC POV + FFV 68.0

SAcC pitch + SAcC POV + FFV 67.6

Table 2. Off-the-shelf pitch extractors (Vietnamese LimitedLP)

Vietnamese Cantonese

Pitch POV %WER %ATWV %CER %ATWV

- - 71.3 20.0 63.3 18.5

SAcC SAcC 68.9 22.0 60.6 20.8

Getf0 SAcC 68.8 21.3 60.1 20.07

Kaldi SAcC 67.1 24.0 58.1 24.1

Kaldi Kaldi 65.6 27.14 56.5 23.49

Table 3. Comparing pitch and POV algorithms on tonal languages

Table 3 shows various combinations of pitch and POV features,

on tonal languages, without FFV features. It can be seen that the

Kaldi pitch and POV features are each better than the corresponding

SAcC-based feature.

8. CONCLUSIONS

We have proposed a robust pitch tracking algorithm based on nor-

malized cross-correlation. The performance evaluation on Keele

dataset showed that our algorithm improves pitch tracking as mea-

sured by GPE, versus the off-the-shelf methods we tested. Exper-

iments on four different languages shows that the technique gives

consistent improvements versus a PLP based system, with a typical

improvement of 6 % absolute on tonal and 2 % absolute on atonal

languages, which is roughly double the improvement we get from

the baseline SAcC-based features.
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